Numerical estimation of the area of the Mandelbrot set
using Monte Carlo Integration

T. Foérstemanil]

(Dated: November 1, 2016)

An analytical expression of the area of the Mandelbrot set is unknown. So far, the most accurate
numerical estimation of the area by R.P. Munafo (2012) based on Monte Carlo integration has
a precision of 7 decimals and takes 8 days on a standard quad core PC. Gaining one more digit
would take about 10 = 100 times the CPU load or about 800 days, theoretically. Practically, in
this approach 8 digits of precision are reached with about 50x the CPU load. Mathematica with
OpenCL on a standad PC system provides approximately a 12x speedup, resulting in a decent CPU

time of about 35 days.

CONTENTS

T Cod Coordi D o

—_ =

W NN N

%

[Considerations

3. Managing the Pixel Pipeline
4. The add List and shift List Procedures
. Post Processing of the Pipeline|

[T Results
IA. Current Area Iistimates|
B. Errors Resulting from Chaotic Pixels|

. Timings and Interim Results

V. Discussion]

[LA. Soucre codel

| 1. Initialisation

2. GPU-code for the addList procedure|

[3. GPU-code for the shiftList procedure]

4. Mathematica functions for the GPU part)

5. Mathematica code for the part

(=} SO Ut Lt Tk W W

— O 00~~~

—_ =

6. Mathematica code tor the CPU post

| processing|

[References

* thorsten@foerstemann.name

14

I. INTRODUCTION
A. Problem Statement

An analytical expression of the area of the
Mandelbrot[I] is unknown. There are numerical estima-
tions of the area, e.g. by Munafo (2012)[2] or [3]. The
aim of this approach is to improve the accuracy of the
numerical area estimation using Monte Carlo integration.

At the moment the most accurate estimation by Mu-
nafo uses a Monte Carlo or pixel counting integration
method[4]. To increase the precision of the area estimate
by a factor of 10, i.e. one digit, the number of counted
pixels must be increased by a factor of 100 = 102. CPU
time grows approximately proportional to the number of
counted pixels. Thus, Monte Carlo estimations become
inefficient at higher precisions.

B. Solution Statement

The basic idea of Monte Carlo implementations is quite
trivial. Monte Carlo implementations can easily be par-
allelized and implemented using OpenCL[5]. Efficient
OpenCL/GPU implementations can run up to 100 times
faster on recent hardware compared to single core CPU
implementations. A speedup by 100 yields one more digit
precision at a given CPU time, as mentioned section [[A]

In this case an efficient OpenGL implementation is not
trivial due to the chaotic behavior of the Mandelbrot set.
This OpenCL/GPU implementation is about 10 times
faster than Munafo’s quad core CPU approach in 2012.
Thus, the actual GPU implementation provides an ap-
proximate speedup of factor 40 compared to an actual
single core CPU implementation. The achieved pixel rate
amounts to about 30 million pixels per second, while the
maximum iteration depth is about 10'°.

Calculations were made in 2012 [7]. The GPU code
ran in a Mathematica 8 environment on a standard PC
with two dual core graphic cards.

mailto:thorsten@foerstemann.name

FIG. 1. Standard PC with two graphic cards.

II. MATERIALS AND METHODS
A. Hardware and Software

A typical PC (refer to ﬁgure is used. Specific details
of the hardware and software configuration are:

e CPU: Intel Core i7 2600K (about $700 full system,
as of 2012)

e GPU: 2x Radeon HD 5970. Thus, there are 4 GPUs
with 1600 stream processors (Cypress) each. Im-
portant feature: double precision; Ebay prices as
of 2012: $250 each.

e Power consumption under load: approx. 350 watts.
Thus, after 1 month we have about 300 kWh en-
ergy consumption and about $70 energy costs (Ger-
many).

e Mathematica 8.0.4.0, Windows 7 (as of 2012)

Mathematica System Information

Kernel | Front End | Links | Parallel | Devices | Network |

¥ Streams
» MathLink
¥+ Java
= .NET
» CUDA
¥ OpenCL
Driver Version
Library Mame
Fastest Platform
Fastest Device
Detaled Information
Platform 1
MName
Version
Vendor
Detailed Information
Device 1
Device Type
Device Name
Device Vendor
Maximum Core Units.
Global Memary Size
Supports Double Predision
Detailed Information
Device 2
Device Type
Device Name
Device Vendor
Maximum Core Units
Global Memory Size
Supports Double Precision
Detailed Information
Device 3
Device Type
Device Name
Device Vendor
Maximum Core Units
Global Memory Size
Supports Double Precision
Detailed Information
Device 4
Device Type
Device Name
Device Vendor
Maximum Core Units.
Global Memary Size
Supports Double Precision
Detailed Information
Device 5
Device Type
Device Name
Device Vendor
Maximum Core Units.
Global Memary Size
Supports Double Predision
Detailed Information
» Database
» WebServices

atiods4. dll
1
4

» 3 ifems

ATI Stream

OpenCL 1.1 ATI-Stream-v2.3 (451)

Advanced Micro Devices, Inc.
» 1 items

GPU

Cypress

Advanced Micro Devices, Inc.
1600

536870912

True

» 45 jfems

GPU

Cypress

Advanced Micro Devices, Inc.
1600

536870912

True

> 45 jfems

GPU

Cypress

Advanced Micro Devices, Inc.
1600

536870912

True

b 45 jfems

GPU

Cypress

Advanced Micro Devices, Inc.
1500

536870912

True

w5 jfems

CPU

Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz

GenuineIntel
8
3221225470
True

» 45 jfems

=

FIG. 2. Mathematica’s OpenCL system information. Most
important information: support for double precision.

e ATI driver Catalyst 11.2 with AMD Stream SDK

2.3 [6] (as of 2012)

B. Methods

In this section the applied method to estimate the area
of the Mandelbrot set based on Monte Carlo integration
is illustrated. The implementation with OpenCL and
Mathematica is detailed in the following sections.

1. Grid Coordinates and Dimensions

The Mandelbrot set is sampled by slightly varying
rasters. Complex numbers z in the complex plane are
parametrized by two real coordinates x and y via z =
x +iy. All floating point calculations are done in double
precision (refer to figure [2)).

Large rasters can not be efficiently handled by the
GPU due to memory and timing issues. Thus, the com-
plete raster has to be partitioned in smaller, so-called
GPU grids. These GPU grids can be arranged in so-
called CPU grids.

To summarize this, rasters are partitioned into:

1. CPU grids of variable size M x M;
Grid points are indexed by (n,m). The indicies
(n,m) are used to index the different GPU grids.

2. GPU grids of fixed size N x N where N = 2048;
Grid points are indexed by (i, 7).

The GPU gird size is N = 2048. Thus, about 4 million
pixels are simultaneously loaded into each GPU. The cal-
culations of the M x M GPU grids can be parallelized by
the i7 quad core CPU using all four GPUs. Thus, these
grids are called CPU grids.

The coordinates for each raster point indexed by 1, j,
n and m are

(i22)- () (2) ()
Ynm,ij offs, m j

Thus, the size of the raster is (NM) x (NM). Since
N is fixed the size of the raster can be parameterized by
M. The offset is given by

offs, \ [—2.05 " rnd;
offs, /| — \ —1.3 w rnds
The spacing of the raster, i.e. the grid interval, is given
by

1.01 4+ 0.01 rnds

= 2.
w 6 NI

where rndy, rnd, and rnds are random numbers be-
tween 0 and 1. These random numbers are arbitrarily
but consistently choosen for each raster.

Figures [3] and [illustrate a typical raster and the dif-
ferent grids. Each GPU grid covers the hole Mandelbrot
set. So, the work load of the different GPU rasters is
approximately balanced.

2. Parallelization and Performance Considerations

As mentioned in section large rasters can not
be efficiently handled by the GPU due to memory and

I GPU grid

FIG. 3. The GPU grid is marked gray. The grid interval wM
is too small to identify individual grid points. The CPU grid
is marked red.

timing issues. In this approach the GPU grid size is set
to N = 2048. Thus, the complete rasters of size (NM)
has to be partitioned in M x M GPU grids.

The calculations of the individual M x M GPU grids
can be parallelized. In Mathematica four worker kernels
process the list of the GPU grids in parallel. Each worker
kernel is bound to an individual GPU. There are two
graphic cards with two GPUs each (refer to figure [1]).

Since N = 2048, about 4 million pixels are simulta-
neously loaded into each GPU. By starting iterating on
these points more and more points will diverge or con-
verge. Some points stay chaotic, these points remain in
the pixel pipeline (refer to section [II B 3)).

Each GPU contains 1600 stream processors (refer to
figure . After a certain number of iterations the number
of remaining pixels in the pipeline will be smaller than
1600. Thus, the GPU load will decrease rapidly. It is
quite sophisticated to keep the pipeline full, especially
when dealing with very high iteration depths about 10'°
and pixel rates about 30 million pixels per second.

3. Managing the Pizel Pipeline

The pipeline is a list of pixel coordinates with accom-
panying iteration count and iteration variables (x and
y). Each GPU has it’s own pipeline. So, there are four
pipelines.

In figure [f the applied algorithm is outlined. At the
beginning the pipeline is empty (i.e. length = 0) and the
parameter ”depth” is set to zero. The add_List procedure

example GPU : grid at n =11, m = 13 (gray)
[}

-1.2990 +
-1.2995 +
-1.3000 -
random offset (green) 32 x 32 CPU grid (red)
rnd, = rnd, = 1.0000
-2.0500 - 2.0495 -2.0490

FIG. 4. The CPU grid for rnd; = rnd2 = 1 and rnds = 0 is
marked red. An example GPU grid is given for n = 11 and
m = 13. The random offset is marked green. The raster size
is 65536 x 65536, since 65536 = 32N and N = 2048.

(vefer to algorithm appends a list of pre selected points
of a GPU grid to the pipeline. The details of the add_List
procedure are outlined in the next section. The proce-
dure add_List is applied until the length of the pipeline
is greater than 500.000 points (refer to figure .

The shift _List procedure (refer to algorithm tries
to apply 24°Pth . 10000 iterations on each pixel in the
pipeline. Pixels belonging to the Mandelbrot set and
diverging pixels are removed from the pipeline. After
applying shift_List the parameter depth is increased by
one. Thus, more and more iterations are applied to less
and less pixels. This balances CPU and GPU load and
helps to detect orbits with long periods. When the length
of the pipeline is smaller than 2000 pixels depth is set to
zero and again add_List is applied to the pipeline (refer

to figure .

Very high iteration depths can be reached by recycling
the less than 2000 non member and non diverging, i.e.
chaotic pixels in the next cycle of the algorithm. At larger
rasters the parameter depth reaches values up to 16.

A drawback of this approach is that there is no control
over the total number of iterations for each pixel, due
to the recycling of chaotic pixels. Thus, the maximum
iteration is not really a maximum, i.e. some pixels may
reach even higher iterations. But it is a guarantied min-
imum number of iterations that is applied before a pixel
is finally regarded as chaotic.

start
length =0

w{ 0
length

>500.000?

shift_list
(depth)

Are there
any GPU grids
left?

add_list

FIG. 5. Pipeline handling

4. The add_List and shift_List Procedures

The add_List procedure adds preselected pixels to the
pixel pipeline. Following figure [5| the add_List procedure
is applied repeatedly to the pipeline until the length of
the pipeline is greater than 500000 pixels. Timings and
statistical portions of diverging, converging or chaotic
pixels are discussed in section [[ILC}

The pseudocode of the add_List procedure reads as fol-
lows:

Algorithm 1 Outline of the add_List procedure
1: create.GPU_grid()

2: do.iterations(990)

3: test_circle_cardioid()

4: forn=1,n<4do
5
6

do_iterations(2"™ x 990)
test_orbit(2" x 1000)

The specific definitions of the sub procedures are:

create_GPU_grid(): This sub routine creates an GPU
grid with 20482 ~ 4 million pixels following the pro-
cedure described in section [IB 1l

do_iterations(n): This sub routine applies up to n
Mandelbrot iterations to each point of the GPU
grid.

test_circle_cardioid(): This sub routine tests any point
whether it is part of the Mandelbrot set’s cardioid
or circle.

test_orbit(n): This sub routine applies up to n Mandel-
brot iterations to each point of the GPU grid and
checks simultaneously for iteration orbits.

The shift_List procedure removes diverging and con-
verging pixels from the pixel pipeline. Following figure
the shift_List procedure is applied repeatedly to the
pipeline until the length of the pipeline is smaller than
2000 pixels. Each time the parameter depth is increased
by one. Depth reaches values up to 16. Timings and sta-
tistical portions of diverging, converging or chaotic pixels
are discussed in section [ITCl

The pseudocode of the shift_List procedure reads as
follows:

Algorithm 2 Outline of the shift_List procedure
1: for n =0, n < depth + 1 do
2: do_iterations(2"™ x 9900)
3: test_orbit(2™ * 10000)

The specific definitions of the sub procedures are the
same as for the add_List procedure.

5. Post Processing of the Pipeline

As mentioned in section there are M x M GPU
grids for a given raster of size (NM)x (NM). At a certain
time all GPU grids are depleted and integrated into the
four pipelines. Then the algorithm mentioned in section
[TB3]ends with up to 4 x 2000 remaining pixels. A usual
CPU based iteration algorithm with orbit detection is
applied to these remaining 8000 pixels of a given raster.
The chosen maximum iterations are listed in table [
On the one hand the maximum iterations are chosen to
balance GPU and CPU load. On the other hand they
are choosen to keep the estimation error of the area due
to the remaining pixels smaller than the error due to
the sampling of the 20 rasters. The total numbers of
remaining pixels for all 20 rasters and the corresponding
errors of the estimated area are listed in table [l

III. RESULTS
A. Current Area Estimates

The estimate from Munafo (2012) and the estimate
calculated here can be read off table[ll The estimate cal-
culated here is based on the results listed in table[[] (refer
to the last row). Table|I]is inspired from a similar table
by Munafo[g].

20 rasters are calculated at each raster size given in
table [l Details of the different rasters can be read off
table [Tt

Raster size: The raster size is the number of raster
points in both dimensions (quadratic rasters).

TABLE I. Comparison of current Mandelbrot area estimates

Estimate & error [Details

Forstemann (2016)

1.506 591 884 9 87960930222 520 calculated pixels
0.0000000028 3028136 sec. (35 days) CPU/GPU time
29047 880 pixel/sec

Munafo (2012)
1.506 591 856
0.000 000 0256

1677721600000 calculated pixels
691 255 sec. (8.00 days) CPU time
2427066 pixel/sec

\\~\ Forstemann (2016)
s
1031 ¢ \‘0\ Munafo (2012)
~
Q
\\.\
~_
5 NN
-5 | ~ S |
E 10 \\\ \\k
= ~e ~
g ~o Tt
E ..\\ l\
.\ \.~
107 ¢ ISR 1
~ L
.~~ \\
S Sso
\~~ ~
\~\
-9
10" Y Lo L L =
10% 107 1010 1013

number of calculated pixels

FIG. 6. A comparison of the mean error versus number of
calculated pixels between this and Munafo’s approach. The
dashed lines correspond to regressions y ~ x~°-%8

Max.iterations: The lower bound of the maximum it-
erations, i.e. the maximum iteration of the post

processing of the pipeline (refer to [[IB 5]).

Area estimate: The area estimate and the 95% confi-
dence interval are calculated using the 20 estimates
each based on one raster. The rasters differ slightly
in grid width and offset. The raster widths and off-
sets are chosen randomly.

Error (mean): The 95% confidence interval of the
mean: 4/1.960 (20 — 1) with standard deviation o

CPU [sec.]: The total GPU/CPU time in seconds
needed to calculate the 20 rasters

Av.pixel/s: The average pixel rate, i.e. number of cal-
culated pixels per second on average

A comparison of the mean error versus number of cal-
culated pixels between this and Munafo’s approach is
given in figure [The numbers are taken from table [[]
and the corresponding table by Munafo mentioned above.

The achieved pixelrate hit 30 million pixels per second
while the maximum iteration is larger than 8- 10°.

TABLE II. Parameters of grids calculated so far and numbers of remaining pixels for different grids after post processing the
pipeline. Corresponding errors of the estimated area are given and can be compared with the error of the mean of the 20

rasters. For explanations of the table headings refer to sections @ and m

Raster size|Max.iterations| Area estimate| Error (mean)|Remain |Error (remain)|CPU [sec.]| Av.pixel/s
16 384 67108 864|1.5065909130({0.0000021717 520(0.0000006755 955| 5621685
32768 134217728|1.506 591 3830(0.000000678 8 1000{ 0.000000 324 8 2539 8457990
65536 268 435456 (1.506 592 037 0/0.000 000 251 4 1889 0.000000153 1 8952| 9595548

131072 536870912(1.506 591911 7/0.000 000 1358 3571]0.0000000723 23979| 14 329 096
262144 1073741824(1.5065919184|0.000 0000400 5711(0.000000029 0 58394 | 23536 486
524 288| 2147483648(1.506 591 883 3|0.0000000217 8091| 0.0000000102 194 027| 28 333985
1048576 4294967 296|1.506591 883 1[0.000 000007 3 8261 0.0000000026 745 509| 29496 938
2097152 8589934592(1.506 591884 9|0.000 0000028 99221 0.0000000008| 3028136 29047880

B. Errors Resulting from Chaotic Pixels

As mentioned above, the GPU based algorithm ends
with up to 4 x 2000 remaining pixels per raster, thus
a total of about 160000 pixels for 20 rasters. The CPU
based iteration algorithm applied to these remaining pix-
els. The number of the finally remaining chaotic pixels
is given in table [[} Since it is unknown wether these
chaotic pixels belong to the Mandelbrot set or not, the
corresponding area is regarded as an error. This error re-
sulting from chaotic pixels should be sufficiently smaller
than the error estimation based on the 20 rasters. Both
errors are given in table [T}

Error (mean): refer to section [III A

remain: The total number of finally remaining pixels af-
ter post iteration of the 20 rasters

Error (remain): The error of the area based on the re-
maining pixels

Since most of the unknown pixels tend to be mem-
bers of the Mandelbrot set they are regarded as members
when calculating the area.

C. Timings and Interim Results

Each pipeline starts with the add_List procedure (re-
fer to figure . The add_List procedure is outlined in
algorithm . First of all a GPU grid is created contain-
ing 20482 pixels (refer to section [[IB2)). Typically these
about 4 million pixels divide into the following parts:
22.25% belong to the Mandelbrot set, 77.69% diverge

and 0.06% remain unknown. Thus, on average 2500 un-
known pixels are appended to the pipeline. This pro-
cedure needs on average 100 milliseconds GPU time for
iterations and about 200 milliseconds CPU time for re-
arranging the pipeline.

The shift_List procedure needs about 20 milliseconds
GPU time on average. This timing is quite independent
from the depth parameter because more and more iter-
ations are applied to less and less pixels with increasing
depth. For example, if shift_List is applied 10 times to
the pipeline we have about 200 milliseconds GPU time.
Finally rearranging the pipeline needs 100 milliseconds
CPU time.

In total we have on average 200+ 10-20 = 400 millisec-
onds GPU time and 100 + 100 = 200 milliseconds CPU
time per raster of size 20482. Thus, we have about 4 mil-
lion pixels per 0.5 seconds for each of the four pipelines
or in total a pixelrate of about 30 million pixels.

While the 400 milliseconds GPU time the CPU is idle.
This time span is used for the post iteration on the CPU
(vefer to . The post iteration runs completely par-
allel to the four pipelines and thus the pixelrate is not
influenced for larger rasters.

IV. DISCUSSION

The main advantage of this GPU based Monte Carlo
approach is the gained pixelrate. It is about 40x faster
than a comparable single core approach. Since Munafo
uses a quad core machine, we have a decent speedup of
about factor 12.

But the main disadvantage of a typical Monte Carlo
approach is still present: the calculated errors are only
based on statistics and have no further theoretical signif-
icance. Although the errors are narrowed, they still can
not be regarded as reliable upper and lower bounds of
the Mandelbrot set.

© 00~ Uk WN -

S N R el ol e el i e e
W OO0 Utk W —~O

Appendix A: Soucre code

1. Initialisation

This Mathematica code initializes the calculation and creates the working files.

path = NotebookDirectory [];

SetDirectory [path];

kernelString = "kernel” <> ToString[$KernellD];

(*+ Parameters x)

sizeSample = 20; (* number of rasters to be calculated x)

sizeCPU = 274, (* raster = sizeCPU x sizeCPU tiles handled by CPU)

sizeGPU = 2711;(*x tile = sizeGPU x size GPU pixels x)

(* Init data x*)
tmp = Table[{
TinlT <>
ToString [
AccountingForm [n, {3, 0}, NumberPadding — {"0", ""},

"o "

NumberPoint —> 11 < " . txt”,

{{{}, {3}, {}} {{RandomReal[], RandomReal[],
RandomReal [}, {sizeCPU, sizeGPU}}, {0, 0}, 0, 0, O}
Y}, {n, 1, sizeSample}];

(x Create init files x)

Map[Put [#[[2]], #[[1]]] &. tmp];

2. GPU-code for the addList procedure

This is the GPU code of the addList procedure. The code is stored as a simple string.

sourceBitmap ="

#ifdef USING.DOUBLE_PRECISIONQ

#pragma OPENCL EXTENSION cl_amd_fp64 : enable
#endif /+x USING.DOUBLE_PRECISIONQ =/

__kernel void mandelbrot_kernel(

__global mint % set, /% housekeeping: data pointer x/
double offx, /+ raster’'s x offset x*/
double offy, /* raster’'s y offset x/
double step, /+ raster’'s grid width x/
mint size) /+* housekeeping: data size x*/
{

int xIndex = get_global_id (0);

int ylndex = get_global_id(1);

int iter;

int initMaxiter = 990; /* initial value of warm up maximum iteration depth (empiric) =/

int orbitMaxiter = 1000; /% initial value maximum iteration depth with orbit test (empiric) =/
int maxDoubling = 3; /* number of maximum iteration’'s doublings (empiric) =/

int doubling;

double x0 = offx + step x xlIndex;
double y0 = offy + step x ylndex;
double tmp, q, x = 0.0, y = 0.0;

double ox, oy;

bool card, circ;
bool member = false;
bool refuge = false;

/* housekeeping: check index x*/
if (xIndex < size && ylndex < size) {
/* warm up iterations x/
for (iter = 0; (x*xty*xy <= 4.0) && (iter < initMaxiter); iter++) {
tmp = xxx — yxy + x0;

y = 2.0xxxy + yO0;
X = tmp;
}
refuge = (xxx+yxy > 4); /* Escape? %/
/+x Circle and cardioide test %/
if (!'refuge) {
q = pow((x0 — 0.25), 2) + y0 x yO0;
card = q * (g + (x0 — 0.25)) < 0.25 % y0 * yO;
circ = pow((x0 + 1.0), 2) + y0O % y0 < 0.0625;
member = (card || circ);

}

/* Maxiter doubling loop x/

for (doubling = 1; !refuge && !member & & doubling<maxDoubling; doubling++) {
/* normal iteration , maxiter: 2"doubling * initMaxiter x/
for (iter = iter;
(x#xty*y <= 4.0) && (iter < pow(2.0f,doubling)*initMaxiter);
iter++) {

tmp = x*x — yx*xy + x0;
y = 2.0xx*xy + yO0;
X = tmp;
}
refuge = (xxx+yxy > 4); /x Escape? x/
/+ iteration with orbit test, maxiter: 2"doubling * orbitMaxiter x/
if (!refuge) {
ox = x; /x set real part for orbit test =/

oy = vy; /% set imaginary part for orbit test =/

tmp = x*x — yx*xy + x0;

y = 2.0%x*xy + yO0;

X = tmp;

for (iter = iter;
(x*x+y*xy <= 4.0) && (iter < pow(2.0f,doubling)*orbitMaxiter) &&
((ox '= x) || (oy !=vy)); /* non orbit test x/
iter++) {

tmp = x*x — y*xy + x0;
y = 2.0xxxy + y0;
X = tmp;

}

refuge = (x*x+yxy > 4); /% Escape? x/
member = ((ox = x) && (oy = y)); /* Orbit? =/
}
if (!refuge && !member) {
set[(ylndex + xIndex #* size)] = 255; /+« mark point as unknown x/
if (member) {
set [(ylndex + xIndex * size)] = 128; /+ mark point as member x/
if (refuge) {
set [(ylndex + xIndex * size)] = 0; /x mark point as refugee x/
}
}

3. GPU-code for the shiftList procedure

This is the GPU code of the shiftList procedure. The code is again stored as a simple string.

sourcelist ="

#ifdef USING_.DOUBLE_PRECISIONQ

#pragma OPENCL EXTENSION cl_amd_fp64 : enable

#endif /+ USING_.DOUBLE_PRECISIONQ x/

__kernel void mandelbrot_kernel(

__global double % set, /% housekeeping: data pointer x*/
mint initMaxiter , /* maxiter without orbit test x/
mint orbitMaxiter , /* maxiter with orbit test =/
mint size) /* housekeeping: data size x/

{

int xIndex = get_global_id (0);
int iter;

double tmp;

double cx, cy, x, y, ox, oy;
bool refuge = false;

bool member = false;

/* housekeeping: check index x*/
if (xIndex < size) {

cx = set[4x(xIndex)]; /+ collecting real part of point coordinates x/

cy = set[4x(xIndex)+1]; /x collecting imaginary part of point coordinates x*/

x = set [4x(xIndex)+2]; /* collecting real part of actual iteration value x/

y = set[4x(xIndex)+3]; /+ collecting imaginary part of actual iteration value x/
/* normal iteration , maxiter: initMaxiter x/

for (iter = 0;
(x*kxty*xy <= 4.0) && (iter < initMaxiter);
iter++) {
tmp = Xx*X — y*xy + cX;
y = 2.0kxxy + cy;
X = tmp;

refuge = (xxx+yxy > 4.0); /x Escape? x/
/* iteration with orbit test, maxiter: orbitMaxiter x*/
if (!'refuge) {

ox = x; /% set real part for orbit test x/

oy = vy; /+ set imaginary part for orbit test =/

tmp = x*X — y*xy + cX;

y = 2.0xxxy + cy;

X = tmp,;

for (iter = iter;
(xkx+y*xy <= 4.0) && (iter < orbitMaxiter) &&
((ox '= x) || (oy !=1vy)); /+ non orbit test x/
iter++) {

tmp = Xx*X — y*xy + cX;
y = 2.0kx*xy 4+ cy;
X = tmp;
}
refuge = (xxx+yxy > 4); /*x Escape? x/
member = ((ox = x) && (oy = y)); /* Orbit? =/

if (refuge) {

/* mark point as refugee x/
set [4x(xIndex)] = 0.0;

set [4*(xIndex)+1] = 0.0;
set [4x(xIndex)+2] = 0.0;
set [4*(xIndex)+3] = 0.0;

if (member) {
/+* mark point as member x/
set[4x(xIndex)] = 1.0;
set [4x(xIndex)+1] =
set [4x(xIndex)+2]
set [4x(xIndex)+3] =

[l
I
o O O

if (!refuge && !member) {
/* mark point as unknown x/
set[4x(xIndex)] = cx;
set [4*(xIndex)+1] = cy;
set [4x(xIndex)+2] = x;
set [4*(xIndex)+3] = y;

10
4. Mathematica functions for the GPU part

This Mathematica code compiles and loads the GPU functions defined above. The Mathematica functions addList
and shiftList are defined here.

Needs[” OpenCLLink ‘"]
ParalleINeeds [”"OpenCLLink ‘"]

1

2

3

4| ParallelEvaluate |

5| sourceBitmap="...";
6
7
8

"

sourcelist="...";

(x wake up device =)
9| mem=OpenCLMemoryAllocate[Integer ,{1024,1024},”" Platform” —>1," Device”—>$KernellD];
10| OpenCLMemoryUnload [mem];

12| (* Load GPU functions x)

13| cIBitmap=OpenCLFunctionLoad |

14 sourceBitmap ,” mandelbrot_kernel”, {{_Integer},” Double” ,” Double” ," Double” , _Integer} ,{16,16},"
ShellOutputFunction”—>Print ,” ShellCommandFunction”"—>Print

15 5

16| clList=OpenCLFunctionLoad |

17 sourcelist ,"mandelbrot_kernel” ,{{" Double” }, _Integer , _Integer , _Integer },64,” ShellQutputFunction”—>
Print ,” ShellCommandFunction”—>Print

18 Ik

19

20| (x Helper function for addList, from point index to point coordinates)

21| gpuRaster[{{rndX_,rndY_,rndW_}, cpuSize_, gpuSize_},idx_}]:=Block]|

22 {cpuOffs , cpuWidth , gpuOffsX , gpuOffsY , gpuWidth},

23 If [idx <O||idx>cpuSize"2,Abort []];

24 cpuOffs={—-2.05,—-1.3}; (* left bottom =)

25 cpuWidth=2.6%(1.01+0.01xrndW) /cpuSize; (* raster size with random variation =)

26 gpuWidth=cpuWidth /gpuSize;

27 {gpuOffsX , gpuOffsY}=cpuOffs —{rndX, rndY }xgpuWidth+{Quotient [idx ,cpuSize],Mod[idx , cpuSize]}x

cpuWidth;
28 {gpuOffsX , gpuOffsY , gpuWidth , gpuSize}
29 1;
30

31| (x fill up work list =)

32| addList[{{fullList_ ,doneList_,workList_},{{rndX_,rndY_,rndW_} ,{cpuSize_, gpuSize_}}, time_, kernel_,
depth_, storedepth_}]:=Block]|

33 {idx ,ox,o0y,step ,size ,mem, res ,out,img,erg,Ist ,timer, timers},

34 timers={0,0};timer=AbsoluteTime [];

35 idx=Length[donelList]+Length[fullList];

36 If [idx>cpuSize"2/4—1,Return[{{doneList ,workList ,timers},{{rndX,rndY ,mdW} {cpuSize,h gpuSize}}, time
+timers , kernel ,depth ,storedepth }]];

37 {ox,o0y,step,size}=gpuRaster [{{rndX,rndY ,mdW} {cpuSize,h gpuSize} 4xidx+(kernel —1)}];

38 timers=timers+{AbsoluteTime[] —timer ,0}; timer=AbsoluteTime [];

39| mem=OpenCLMemoryAllocate[Integer ,{size ,size }];

40 res=clBitmap [mem, ox, oy, step,size |;

41 out=OpenCLMemoryGet[First [res]]; OpenCLMemoryUnload [mem];

42 timers=timers+{0,AbsoluteTime[]—timer };timer=AbsoluteTime [];

43 img=Image [out,” Byte" |;

44 erg=Imagelevels[img,3][[{1.2},2]];

45 Ist=ImageData[Binarize [img,0.9]];

46 Ist=ArrayRules[SparseArray[Ist]][[;; —2,1]];

47 Ist=Map[{4=*idx+(kernel —1),{ox,oy}+(#—1)xstep ,{0.0,0.0} ,0}&, Ist];

48 timers=timers+{AbsoluteTime[] —timer ,0}; timer=AbsoluteTime [];

49 {{fullList ,Append[donelist ,{4xidx+(kernel —1),erg}],Join[workList,Ist]} ,{{rndX,rndY , rndW} {
cpuSize , gpuSize}},time+timers , kernel ,depth,storedepth}

50| 1

52| (x Helper function for shiftList , extract positions x)

53| positionHelper[{doneList_,workList_},bothList_, pattern_]:=Block|

54 {extractedList},

55 extractedList=Extract[workList, Position[bothList, pattern]];

56 extractedList=extractedList [[All ,{1,2,3}]];

57 extractedList=Split[Sort[extractedList] ,#I1[[1]]==#2[[1]]&];

58 extractedList=Map[{#[[1,1]], Length[#]}&, extractedList];

59 extractedList=Map[{ Position [doneList [[All ,1]].#[[1]]][[1.1]],#/[[2]]} & , extractedList];

60

7
78

79
80
81
82
83

84
85

© 00 O U W

=
W N = O

15
16

18
19

20
21

23
24

25
26
27
28

11

extractedList

l;

(x die out work list x)

shiftList [{{fullList_ ,doneList_,workList_},{{rndX_,rndY_, rndW_} {cpuSize_, gpuSize_}}, time_, kernel_
,depth_, storedepth_}]:=Block]|

{bothList ,refugelist ,memberList,unknownList,doneOut,workOut, fullOut ,timer , timers},

timers={0,0};timer=AbsoluteTime [];

doneOut=donelist;

bothList=Flatten [Map[{#[[2,1]],#][[2.2]].#[[3.1]].#][[3.2]]}& ,workList]];

timers=timers+{AbsoluteTime[] —timer ,0}; timer=AbsoluteTime [];

bothList=clList [bothList ,2" depth*x9900,2" depth*10000,Length[bothList]/4];

timers=timers+{0,AbsoluteTime[] —timer };timer=AbsoluteTime [];

bothList=Partition[First[bothList], 6 4];

refugelList=positionHelper [{doneList,workList},bothList ,{0.,0.,0.,0.}];

Do[doneOut [[refugeList [[i,1]],2,1]]=donelist[[refugelList [[i,1]],2,1]]+ refugeList[[i,2]],{i,Length
[refugelList]}];

memberList=positionHelper[{donelList ,workList},bothList ,{1.,1.,1.,1.}];

Do[doneOut [[memberList [[i,1]],2,2]]=donelList [[memberList[[i,1]],2,2]]+ memberList[[i,2]],{i,Length
[memberList]}];

unknownList=Position [bothList , Except[{0.,0.,0.,0.}{1.,1.,1.,1.}],{1}];

unknownList=Transpose[{ Drop[Extract [workList ,unknownList],1],Drop[Extract[bothList ,unknownList
] 1]};

workOut=Map [{#[[1,1]] {#[[2.1]] . #[[2.2]]} A#[[2.3]], #1[2 . 4]]} . #[[1,4]]+ depth}&, unknownList |

fullOut=Join[fullList ,Select [doneOut, Not[gpuSize"2—Total [#[[2]]] >0]&]];

doneOut=Select [doneOut, gpuSize 2—Total [#[[2]]] >0&];

timers=timers+{AbsoluteTime[] —timer ,0}; timer=AbsoluteTime [];

{{fullOut ,doneOut,workOut},{{rndX,rndY ,rndW} {cpuSize 6 gpuSize}}, timettimers , kernel ,depth+1,
storedepth}

IE

IE

5. Mathematica code for the CPU part

This Mathematica code represents the main loop.

path=NotebookDirectory [];
SetDirectory [path];
files=FileNames["in_x"];

(* Main loop x*)

While[files!={},

allTime=AbsoluteTime [];

file=First[files];

set=Get|[file];

upperLimit=500000;lowerLimit=2000;finalLimit=20; (* list dimensions x)
DistributeDefinitions [set,upperLimit,lowerLimit, finalLimit ,path, file];

(* Begin parallel evaluation x)
ParallelEvaluate [
SetDirectory [path];

(x init working list x)

{{fullList ,donelList ,workList},{{rndX, rndY ,rmdW}, {cpuSize,h gpuSize}}, timer ,h kernel ,depth,h storedepth
}=set;

set={{fullList ,donelList ,workList},{{rndX, rndY ,rmdW} {cpuSize,h gpuSize}},{0,0},$KernellD 0,
storedepth };

(* CPU raster loop *)
While [4x(Length[fullList]+Length[doneList])<cpuSize"2,

(« fill up working list =)
set=NestWhile[addList ,set,Length [#[[1,1]]]+ Length [#[[1,2]]]<#[[2,2,1]]"2/4&& Length [#[[1,3]]]<
upperLimit&];

(x die out working list =x)

set=NestWhile[shiftList ,set, Length [#[[1,3]]] > lowerLimit&];

(* update working list =x)

{{fullList ,doneList ,workList},{{rndX,rndY ,rndW} {cpuSize,h gpuSize}}, timer,h kernel ,depth,6 storedepth
}=set;

29
30
31
32
33

35
36
37
38
39
40

43

47

0O ULk WK -

—
W N = O ©

14
15
16
17

12

(x print work list status x)

Print [Grid [{{

DateString [AbsoluteTime[],{" Day” ,”:” ," Time" }],

ToString [Round [(Length[fullList]+Length[doneList])/cpuSize 2x4%100,0.1]]<>"%",
ToString [Length[fullList]],
ToString[Length [donelList]],

ToString [Length [workList]],

ToString [Round[timer[[1]],0.1]]<>" s",
ToString [Round[timer[[2]],0.1]] < >" s"
ToString [depth]
}},Frame—All , Alignment—>Right , ItemSize —>All , Background—>Which [kernel==1,LightRed , kernel==2,

LightGreen , kernel==3,LightBlue , kernel==4,LightGray]]];

(* update working list with resetted times x)

set={{fullList ,donelList ,workList},{{rndX,rndY ,mdW} {cpuSize,h gpuSize}},{0,0}, kernel ,0,depth};
IE

(x write work list to kernel file =x)

Put[set,StringReplace[file ,{"in"—>"out” ,”.txt"—>""}<>" _"<>ToString[$KernellD]<>" . txt" |;

]

(x End parallel evaluation x)

(* print work list final status x)

Print [Grid [{{

DateString [AbsoluteTime[],{" Day” ,”:” ," Time" }],

file , ToString[IntegerPart [AbsoluteTime[]—allTime]]<>" s
}}.Frame—>All , Alignment—>Right , ItemSize >All]];

"

(x Read 4 kernel files =x)

tmp=Map[Get, Table[StringReplace[file ,{"in"—>"out” ,” . txt"—>""}]<>" _"<>ToString [i]<>".txt" {i, 4}]];
tmp=Transpose [tmp[[All ,1]]];

tmp=Apply[Join ,tmp,1];

cpu=tmp[[3, All ,{2,3}]];

cpu=Map[#[[1]]+ I *#[[2]]& , cpu {2}];

summ=Total [tmp[[1, All ,2]]]+ Total [tmp[[2, All ,2]]];

(x Write result files: { time, {#member, #nonmember}, list of coords of unknown} x)

Put[{ AbsoluteTime[] —allTime ,summ,cpu},StringReplace[file ,{"in"—>"out” ,” . txt"—>""}<>" _5"<>" . txt"];
(x Delete input file, mark as done x*)

DeleteFile[file];

files=FileNames["in_x"];

1;

6. Mathematica code for the CPU post processing

This is the code for the post processing of the pipeline. This code runs entirely on the CPU and in parallel to the
main loop above.

path=NotebookDirectory [];
SetDirectory [path];

(x filel —4: kernel files x)

files=FileNames[" out_0001_1.txt"];

While [files=={},Pause[10]; files=FileNames["out_0001_1.txt"]];
datal=Get[”" out_0001_1.txt"][[2]];

cpuSize=datal [[2,1]] (x get only cpu grid size x)
level=Log[2,cpuSize] (* calc depth x*)

(* compile start =x)
cPostlter =Compile[{{zz, _Complex,1}},

Module[{n = 0,nn=0,c=zz[[1]] ,z=2zz[[2]] ,20=0.40. |, maxi0=2"15,maxil=2"16,refuge=False ,member=False ,
istep=0},
While[istep<zz[[3]]+7&&! refuge&&!member,
nn=0;
While [nn<2"istep &&!refuge |,
n=0;

While[n < maxi0 &&!refuge |,
z =272 + c;
refuge=Re[z]"2 + Im[z]"2 > 4;
n++

1

nn++

1

If[!refuge,

z0=z;

z=z"2+c;

nn=0;

While[nn <2%istep &&!refuge&&!member ,
n=0;
While[n < maxil &&!refuge&&!member
z =272 + c;
refuge=Re[z]"2 + Im[z]"2 > 4;
member=(Re [z0]==Re[z])&&(Im[z0]==Im[z]) ;
n++
l;
nnt+

|E

IE

istep++;

IE
Which [

refuge ,{0,istep ,n,nn},
member,{1,istep ,n,nn},
True,{zz[[1]], istep ,n,nn}

], RuntimeAttributes—>{Listable},Parallelization —>True, CompilationTarget—>"C" ,RuntimeOptions—>"
Speed”
1

(* Main loop x*)
While [True,
path=NotebookDirectory [];
SetDirectory [path];
filesb=FileNames["out_*%_5.txt"];
files6=FileNames[" out_*_6.txt"];
files5=Map[StringReplace [#," 5. txt"—>""]&, files5 |;
files6=Map[StringReplace [#,”_6.txt"—>""]&, files6 |;
files=Complement[files5 , files6];
If[files=={} Pause[10],
allTime=AbsoluteTime [];
file=First[files];
data=Get[file <" 5. txt" |;
tmp=Map [{#[[1]] . #[[2]] , level}&, data [[3]]];
cpu=Chop[cPostlter [tmp]][[All ,{1,2}]];
Put[cpu, file <" _6"<>" . txt"];
summ=data [[2]]+{ Length[Select [cpu ,#[[1]]==0.&]], Length [Select [cpu,#[[1]]==1.&]]};
left=Length[cpu]—Length[Select [cpu ,#[[1]]==0.&]]— Length[Select [cpu,#[[1]]==1.&]];
rnd=Get [file <" _1"<>" txt” [[[2,1,3]];
area=(summ[[2]]+ left)/(Total [summ]+left)*(2.6%(1.014+0.01*rnd)) "2;

Put[{area ,summ[[1]] ,summ[[2]] , left ,rnd,IntegerPart [AbsoluteTime[]—allTime]}, file <" _7"<>".txt"];
Print [Grid [{{

DateString [AbsoluteTime[] ,{"Day” ,”:” ," Time" }],

file ,

ToString [AccountingForm [area ,{8,8},DigitBlock —>3,NumberPadding—>{"" ,"0" }]],
ToString [summ[[1]]],
ToString [summ[[2]]],
ToString[left],
rnd ,
ToString[IntegerPart [AbsoluteTime[]—allTime]]<>" s
}}.Frame—>All , Alignment—>Right , ItemSize —>All |];
IE
1

13

1] http:
2] http:
3] http:
4] http:
5] http:
6] http:
7] http:
8] http:

//en.wikipedia.org/wiki/Mandelbrot_set
//www.mrob.com/pub/muency/pixelcounting.html
//oeis.org/A098403
//en.wikipedia.org/wiki/Monte_Carlo_method
//en.wikipedia.org/wiki/OpenCL
//forums.wolfram.com/mathgroup/archive/2011/Jun/msg00615.html
//www.foerstemann.name/labor/area/Mset_area.pdf

//www.mrob. com/pub/muency/pixelcounting.html

14

http://en.wikipedia.org/wiki/Mandelbrot_set
http://www.mrob.com/pub/muency/pixelcounting.html
http://oeis.org/A098403
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/OpenCL
http://forums.wolfram.com/mathgroup/archive/2011/Jun/msg00615.html
http://www.foerstemann.name/labor/area/Mset_area.pdf
http://www.mrob.com/pub/muency/pixelcounting.html

	Numerical estimation of the area of the Mandelbrot set using Monte Carlo Integration
	Abstract
	Contents
	Introduction
	Problem Statement
	Solution Statement

	Materials and Methods
	Hardware and Software
	Methods
	Grid Coordinates and Dimensions
	Parallelization and Performance Considerations
	Managing the Pixel Pipeline
	The add_List and shift_List Procedures
	Post Processing of the Pipeline

	Results
	Current Area Estimates
	Errors Resulting from Chaotic Pixels
	Timings and Interim Results

	Discussion
	Soucre code
	Initialisation
	GPU-code for the addList procedure
	GPU-code for the shiftList procedure
	Mathematica functions for the GPU part
	Mathematica code for the CPU part
	Mathematica code for the CPU post processing

	References

